27 research outputs found

    Vision for Micro Technology Space Missions

    Get PDF
    It is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and it is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and consider potential long-term, perhaps disruptive or revolutionary, impacts that MEMS technology may have for future civilian space applications. A general discussion of the potential for MEMS in space applications is followed by a brief showcasing of a few selected examples of recent MEMS technology developments for future space missions. Using these recent developments as a point of departure, a vision is then presented of several areas where MEMS technology might eventually be exploited in future Science and Exploration mission applications. Lastly, as a stimulus for future research and development, this chapter summarizes a set of barriers to progress, design challenges and key issues that must be overcome in order for the community to move on, from the current nascent phase of developing and infusing MEMS technology into space missions, in order to achieve its full future potential

    Looking Back and Looking Forward: Reprising the Promise and Predicting the Future of Formation Flying and Spaceborne GPS Navigation Systems

    Get PDF
    A retrospective consideration of two 15-year old Guidance, Navigation and Control (GN&C) technology 'vision' predictions will be the focus of this paper. A look back analysis and critique of these late 1990s technology roadmaps out-lining the future vision, for two then nascent, but rapidly emerging, GN&C technologies will be performed. Specifically, these two GN&C technologies were: 1) multi-spacecraft formation flying and 2) the spaceborne use and exploitation of global positioning system (GPS) signals to enable formation flying. This paper reprises the promise of formation flying and spaceborne GPS as depicted in the cited 1999 and 1998 papers. It will discuss what happened to cause that promise to be mostly unfulfilled and the reasons why the envisioned formation flying dream has yet to become a reality. The recent technology trends over the past few years will then be identified and a renewed government interest in spacecraft formation flying/cluster flight will be highlighted. The authors will conclude with a reality-tempered perspective, 15 years after the initial technology roadmaps were published, predicting a promising future of spacecraft formation flying technology development over the next decade

    What's New is What's Old: Use of Bode's Integral Theorem (circa 1945) to Provide Insight for 21st Century Spacecraft Attitude Control System Design Tuning

    Get PDF
    This paper revisits the Bode integral theorem, first described in 1945 for feedback amplifier design, in the context of modern satellite Attitude Control System (ACS) design tasks. Use of Bode's Integral clarifies in an elegant way the connection between open-loop stability margins and closed-loop bandwidth. More importantly it shows that there is a very strong tradeoff between disturbance rejection below the satellite controller design bandwidth, and disturbance amplification in the 'penalty region' just above the design bandwidth. This information has been successfully used to re-tune the control designs for several NASA science-mission satellites. The Appendix of this paper contains a complete summary of the relevant integral conservation theorems for stable, unstable, and non-minimum- phase plants

    Prediction of attrition in agitated particle beds

    No full text
    The majority of pharmaceutical powders produced through crystallisation are dried in agitated dryers. The rotation of the impeller causes shear deformation of the bed, which enhances the drying rate, but also leads to particle breakage. A method of predicting the extent of breakage occurring due to agitation is described and applied for Paracetamol in a small-scale dryer. The distributions of stresses and strains in the bed are estimated using the Distinct Element Method (DEM). The information obtained here is then coupled with the measured attrition of Paracetamol in an annular shear cell in order to predict the attrition in the agitated bed. The experiments are carried out on dry material so as to establish purely the effect of stresses and strains on attrition, whilst keeping moisture content and temperature constant.The shear cell provides uniform condition for stresses and strains so that the breakage taking place under relatively well-defined conditions is quantified. In contrast, the prevailing shear stresses and strains in the agitated bed have wide distributions, as little shearing takes place near the impeller shaft, whilst there are considerable shearing stresses near the impeller tip. Therefore, the bed is divided into a number of segments for which the extent of attrition can be evaluated for each segment, based on the shear cell data. A good quantitative agreement is found between the predictions and experimental results obtained for the attrition of Paracetamol in the small scale dryer. The resulting prediction also suggests that, for a given number of impeller rotations, the extent of breakage is independent of impeller speed in the range tested (20-78. rpm). This is expected as the prevailing strain rates are too low for the inertial effects to be dominating and the shear stresses are independent of shear rates within the range investigated. The attrition prediction suggest that over half of the attrition occurs in the bottom third of the bed, with increased attrition at greater radial distances. The attrition is also predicted to occur predominantly within the region extending from 30掳 in front of to 30掳 behind the impeller

    Creative destruction in science

    Get PDF
    Drawing on the concept of a gale of creative destruction in a capitalistic economy, we argue that initiatives to assess the robustness of findings in the organizational literature should aim to simultaneously test competing ideas operating in the same theoretical space. In other words, replication efforts should seek not just to support or question the original findings, but also to replace them with revised, stronger theories with greater explanatory power. Achieving this will typically require adding new measures, conditions, and subject populations to research designs, in order to carry out conceptual tests of multiple theories in addition to directly replicating the original findings. To illustrate the value of the creative destruction approach for theory pruning in organizational scholarship, we describe recent replication initiatives re-examining culture and work morality, working parents\u2019 reasoning about day care options, and gender discrimination in hiring decisions. Significance statement It is becoming increasingly clear that many, if not most, published research findings across scientific fields are not readily replicable when the same method is repeated. Although extremely valuable, failed replications risk leaving a theoretical void\u2014 reducing confidence the original theoretical prediction is true, but not replacing it with positive evidence in favor of an alternative theory. We introduce the creative destruction approach to replication, which combines theory pruning methods from the field of management with emerging best practices from the open science movement, with the aim of making replications as generative as possible. In effect, we advocate for a Replication 2.0 movement in which the goal shifts from checking on the reliability of past findings to actively engaging in competitive theory testing and theory building. Scientific transparency statement The materials, code, and data for this article are posted publicly on the Open Science Framework, with links provided in the article

    The Development of NASA's Fault Management Handbook

    No full text
    NASA is developing a FM Handbook to establish guidelines and to provide recommendations for defining, developing, analyzing, evaluating, testing, and operating FM systems. It establishes a process for developing FM throughout the lifecycle of a mission and provides a basis for moving the field toward a formal and consistent FM methodology to be applied on future programs. This paper describes the motivation for, the development of, and the future plans for the NASA FM Handbook

    Agent Based Software for the Autonomous Control of Formation Flying Spacecraft

    No full text
    Distributed satellite systems is an enabling technology for many future NASA/DoD earth and space science missions, such as MMS, MAXIM, Leonardo, and LISA [1, 2, 3]. While formation flying offers significant science benefits, to reduce the operating costs for these missions it will be essential that these multiple vehicles effectively act as a single spacecraft by performing coordinated observations. Autonomous guidance, navigation, and control as part of a coordinated fleet-autonomy is a key technology that will help accomplish this complex goal. This is no small task, as most current space missions require significant input from the ground for even relatively simple decisions such as thruster burns. Work for the NMP DS1 mission focused on the development of the New Millennium Remote Agent (NMRA) architecture for autonomous spacecraft control systems. NMRA integrates traditional real-time monitoring and control with components for constraint-based planning, robust multi-threaded execution, and model-based diagnosis and reconfiguration. The complexity of using an autonomous approach for space flight software was evident when most of its capabilities were stripped off prior to launch (although more capability was uplinked subsequently, and the resulting demonstration was very successful)

    The Inertial Stellar Compass (ISC): A Multifunction, Low Power, Attitude Determination Technology Breakthrough

    No full text
    The Inertial Stellar Compass (ISC) is a miniature, low power, stellar inertial attitude determination system with an accuracy of better than 0.1 degree (1 sigma) in three axes. The ISC consumes only 3.5 Watts of power and is contained in a 2.5 kg package. With its embedded on-board processor, the ISC provides attitude quaternion information and has Lost-in-Space (LIS) initialization capability. The attitude accuracy and LIS capability are provided by combining a wide field of view Active Pixel Sensor (APS) star camera and Micro- ElectroMechanical System (MEMS) inertial sensor information in an integrated sensor system. The performance and small form factor make the ISC a useful sensor for a wide range of missions. In particular, the ISC represents an enabling, fully integrated, micro-satellite attitude determination system. Other applications include using the ISC as a single sensor solution for attitude determination on medium performance spacecraft and as a bolt on independent safe-hold sensor or coarse acquisition sensor for many other spacecraft. NASA's New Millennium Program (NMP) has selected the ISC technology for a Space Technology 6 (ST6) flight validation experiment scheduled for 2004. NMP missions, such a s ST6, are intended to validate advanced technologies that have not flown in space in order to reduce the risk associated with their infusion into future NASA missions. This paper describes the design, operation, and performance of the ISC and outlines the technology validation plan. A number of mission applications for the ISC technology are highlighted, both for the baseline ST6 ISC configuration and more ambitious applications where ISC hardware and software modifications would be required. These applications demonstrate the wide range of Space and Earth Science missions that would benefit from infusion of the ISC technology
    corecore